1 day to go Part II

Αύριο τελειώνω!

Τελικά δεν απέχει πολλά η Δευτέρα που την Παρασκευή.

Math Analysis tomorrow…Ότι ξέρετε και σεις ξέρω και γω. Εν να μάθω 1000 πράματα πόξω, να πάω να τα γράψω και σε 5 λεπτά να τα ξεχάσω.

Παράδειγμα:

Prove that the irrational numbers are uncountable:

Since we know that Reals are the union of the rationals and irrationals we can deduce that irrationals are uncountable.
The rationals are countable since you can put them in an exhaustive ordered list which describes a bijection from the natural numbers to the set. Knowing also that the theorem which states that a union of countables gives a countable  set holds we can use it for contradiction.
The  Reals are uncountable as shown by the Cantor diagonal argument.
Hence if Reals = Rat. + Irr. we can deduce by contradiction that irrational numbers are uncountable.

Yup…τωρά που ξέρω ότι τα irrationals εν uncountable νιώθω καλύτερος άνθρωπος.

Advertisements

2 Responses to 1 day to go Part II

  1. anonymous says:

    eukola re !

  2. roam365 says:

    en je eipa oti en nen eukola. It’s a matter of remembering them. Γιατί δεν υπάρχει περίπτωση να ανακαλύψεις δικό σου proof τζινην την ωρα…

tsil to speak - comments

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: